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Outline of talk

• Ion-driven warm dense matter

• Warm Dense Matter (WDM) target chamber, 
targets, and diagnostics

• Experimental plan and target simulations
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Ion beams provide a tool for generating homogeneous 
warm dense matter.

Short pulse
ion beam

Example: Ne+

Enter target
Exit target

Al target
• Warm dense matter (WDM)

– T ~ 0.1 to 10 eV
– ρ ~ 0.01 -1 * solid density

• WDM strategy: maximize 
uniformity and the efficient use of 
beam energy by placing Bragg peak 
at center of foil (NDCX-2)

• Alternate: uniform pedestal for 
heavy ions at lower beam energy 
(~NDCX-1)

GSI

Northcliffe, Schilling
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Characteristics of ion beam driven HEDP/WDM.

Precise control of energy deposition 

Sample size large compared to diagnostic resolution 
volumes (~ 1 micron thick by ~ 1 mm diameter)

Uniform energy deposition (<~ 5%) 

Able to heat any target material (conductors, insulators, 
foams, powders, ...)

A benign environment for diagnostics

High repetition rates (10/hour to 1/second)
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NDCX-I has demonstrated simultaneous transverse 
focusing and longitudinal compression of K+ beam.

120 ns 
section of 
pulse
compressed 
to ~ 2 ns

Velocity tilt 
accelerates tail, 
decelerates head

Neutralizing 
plasma is 
required for final 
focus
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New WDM target chamber is installed on NDCX-I.
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New WDM target chamber is installed on NDCX-I.

Injector Target ChamberBeam transport
solenoids

Final
Focus

solenoid

Bunching 
module

FCAPS
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WARM DENSE MATTER TARGET CHAMBER
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Funnel (cone) to concentrate ion beam energy density 
on target has several advantages.

• Cone acts as grazing incidence 
mirror.  Enhanced ion intensity 
using cone has been demonstrated.

• Space charge neutralization of beam 
electric field by presence of walls, 
electron production may improve 
final focus on target.

• Cone shields target from unwanted 
heating by edge of beam.

Scattering K+ on gold
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WDM
Target

Gold cone

Ion beam

TRIM calculations for a single reflection

300-keV K+ on 
gold cone

simple cone

paraboloid
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HYDRA simulations of NDCX-I planar targets predict temperatures 
of a few tenths of an eV.

Simulation assumptions:  Ion energy: 350 keV    Energy fluence: 0.1 J/cm2  

Spot radius: 0.5 mm Pulse duration:  2ns FWHM    Total energy deposited:  
0.8 mJ    Peak current:  1 A (40 times compression)      Total charge: 2.3 nC

Tin
Tmax =0.24 eV

at t=6 ns

Beam

r (cm)-0.2 0.2

z
(10-6

cm)

30

0

T(eV)

-0.2

0.24

0.023

HYDRA simulations by 
Enrique Henestroza

Energy required to reach boiling 
point (J/cm2): 0.12 (Au); 0.25 (Al)

depth

Beam
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Initial experiments test diagnostics for WDM targets.

Probe laser

Self emission (out 
of plane)

Probe laser 
transmission

Current 
input

Voltage taps

ION 
BEAM

Sapphire 
substrate

SAMPLE 
<1-micron

Initial diagnostics will include

– Optical emission, especially high 
speed optical pyrometer 

– High speed I-CCD cameras
– Streak camera 
– Optical spectrometer
– VISAR probe

Future: laser, conductivity probes etc. 

Probe laser 
specular 
reflection

Initial set of targets
• Deposited on sapphire substrate

– Al: 350 nm
– Au: 150 nm 
– W:  150 nm

• Free-standing foils
– 350-nm Al
– 150 nm Au
– 120 nm Pt
– 400 nm Si
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Heated sample

Fiber bundle

Streak camera spectrometerPyrometer:
Doppler-shift interferometer (VISAR):

Target chamber:

Optical diagnostics of target

Probing of target:
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2 x NIR achromatic doublets, f=75, d=50.8

MM fiber 400 um

Image guide 1.5 mm

T
ar

g
et

M
irror

8/92 beam
 splitter

50 mm video lens

8/92 beam 
splitter

45 deg. turning mirror

MM optical fiber, d=400 µm

Image guide=1.5 mm 

f=50 mm video lens

Pair of NIR achromatic 
Doublets, f=75 mm 

LED illumination ring 

Beam

Light collection/probing system

P Ni
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Ultra-fast optical pyrometer for experiments at NDCX

Channel #1: 750 nm+-75 nm
Channel #2: 1000 nm+-75 nm
Channel #3: 1400 nm+-75 nm
detectable level ~2000 K (blackbody)
76 ps rise/fall time 
Can  be upgraded up to 7 channels

Fiber input
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Shot2
Shot4
Shot5
Shot6
Shot7
Shot8
Shot9

Target

Collection lens
Guiding mirror

Alignment CCD
fiber

Benchmarking pyrometer at ALS 
using pulsed Ti-sapphire laser

Rapid change in
target temperature

<-2 ns->

P Ni
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Near-term NDCX-1 experiments plan to explore 
phase transitions in heated targets.
• Characterize NDCX beam using beam and target diagnostics – prepulse, 

compressed pulse, pulse-to-pulse reproducibility

• Test scintillator, gas-based beam spot diagnostics 

• Test gold cone 

• Use pre-heat to reach boiling point, then use compressed pulse to 
explore liquid-gas phase transition (e.g. droplet, bubbles)

• High-electron-affinity targets (gold, iodine)

• Porous targets (e.g. gold black) to lengthen expansion time of target foils

• Diagnostic commissioning and diagnostic development: improved 
pyrometer sensitivity, optical polarimeter

• Silicon target: relevant to NIF damage control
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Porous target slows expansion compared to response of solid 
target to ion beam pulse.

Pyrometer data comparing response 
of porous and solid target at GSI

• Beam range increases in 
porous target, slowing down 
hydro expansion time

• Very low density porous 
targets, such as gold black, 
can increase expansion time 
by factor ~100 

• Target expansion time can 
be >> compressed pulse 
length ~2 ns.

• Modeling of porous target 
response is underway
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Iodine, 0.1 g/cm3
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Experiment in high electron affinity targets

• Unusual material – dominated by +/- ions
• narrow temperature range; e.g. 0.4 to 0.7 eV for iodine at 0.1 g/cc.
• radiation from charge exchange
• expect conduction by charge transfer
• Other: optical behavior, metal-insulator transition

Electron affinity:

Au 2.3 eV

I 3.1

Br 3.4

neutral

- ion

+ ion

electron

R. More
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Formation of droplets during expansion of target in 
liquid – vapor two-phase region.

(J. Barnard,  et al.)
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Example of evolution of target in ρ and T

DPC result

0 ns
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1 ns

Vgas= Vliquid

Target is first entirely liquid then
enters two phase regime.



8/6/2008

20

Summary

• Ion beams provide a new tool to generate homogeneous WDM. 

• Existing pulsed accelerators and pulse compression technique 
developed in HIFS-VNL to be used in the experiments.

• We have installed a new target chamber; developed and tested initial 
target diagnostics.  

• Initial experiments will take advantage of beam pre-pulse to pre-heat 
foils; goal is to study liquid-gas phase transition region.

• Future experiments will explore e.g. high electron-affinity targets, 
porous targets.

• Higher temperatures, longer range expected in NDCX-II.
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Benchmarking fast pyrometer diagnostic at ALS

70 mm 30 mm

Collections lens
f=25 mm, f/1 coated achromat

200 um fiber
to pyrometer

Guiding mirror
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Laser @
 800 nm

Amplified Ti-Sapphire laser @ 800 nm,
pulse duration ~  100 fs,

energy 5-10 mJ, spot size 400 um
Copper target: 120 nm thick + 5 nm of protective carbon on both sides

Target

Collection lens

Guiding mirror

Alignment CCD
fiber
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WARM DENSE MATTER TARGET CHAMBER
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We have begun a series of experiments in warm dense 
matter.

• Porous target experiment at GSI to compare response of solid/porous targets:
– Performed Dec. 2006; Analysis underway

• First beam-driven WDM target experiments at LBNL for beam and diagnostic 
commissioning: 2008

– T > 0.15 eV, NDCX-1
• Low density porous target studies (e.g. gold black on NDCX-1) 
• High electron affinity WDM targets

– T > 0.4 eV,   NDCX-1/NDCX-2
• Two-phase liquid vapor WDM targets: fragmentation, droplet formation

– T ~ 0.5 – 1 eV,  NDCX-1/NDCX-2
• Other EOS studies; critical point

– T ~ 1 eV,  NDCX-2
• Beam - shock-wave coupling in cryogenic targets (Ne, H) 

– NDCX-2
• Other:

– Micro-implosions driven by ion beam
– Thin target dE/dx, beam scattering, charge state
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Transient optical transmission experiments in quartz 
fiber performed on HCX (1 MeV K+ ion beam).

Optical transmission experiment: look for 
difference in fiber transmission with and 
without beam.

Initial experiment shows possible weak 
effect at 10 µs, long wavelengths è


